Cell:图谱!1篇论文揭秘769个癌症“关键”基因

2017-08-01 佚名 生物探索

7月27日,发表在Cell杂志上题为“Defining a Cancer Dependency Map”的研究成果中,来自Broad研究所和Dana-Farber癌症研究所的科学家们建立了癌细胞遗传弱点的综合目录。具体来说,研究人员鉴定出了超过760个癌细胞生长和生存强烈依赖的基因。其中,许多依赖性(dependencies)是针对某些特定的癌症类型,另外,有约10%的依赖性在多种癌症中是共同存在

7月27日,发表在Cell杂志上题为“Defining a Cancer Dependency Map”的研究成果中,来自Broad研究所和Dana-Farber癌症研究所的科学家们建立了癌细胞遗传弱点的综合目录。具体来说,研究人员鉴定出了超过760个癌细胞生长和生存强烈依赖的基因。其中,许多依赖性(dependencies)是针对某些特定的癌症类型,另外,有约10%的依赖性在多种癌症中是共同存在的。这表明,靶向这些核心“依赖性”的疗法有望用于对抗多种肿瘤。
The new list of dependencies represent genes coding for a wide range of proteins.(图片来源:Cell)

为了获得这一发现,研究小组对代表超过20种癌症(下图)的501个细胞系进行了全基因组RNA干扰(RNA interference,RNAi)筛选:在每个细胞系中单独沉默了17,000多个基因,以识别癌细胞特有的基因依赖性。
图片来源:Cell

癌细胞可能会携带各种各样的遗传错误,包括一个小的突变或者染色体之间DNA的大规模交换。但是,当某个错误影响到了一个关键基因时,癌细胞会通过调节其它基因的活性来 “弥补这一错误”,并基于这种适应性建立了对某些基因的依赖性。识别癌细胞的这些“依赖性”能够帮助科学家们进一步理解癌症生物学,以及识别新的治疗靶点。

1核心技术——RNA干扰

RNAi技术是利用小干扰RNA(small interfering RNAs,siRNAs)使基因变得沉默。为了进行全基因组RNAi筛选,研究人员使细胞暴露在siRNAs池(expose cells to pools of siRNAs)中,并追踪细胞的行为。

Broad 研究所参与该研究的David Root博士说:“对这些被处理的细胞,我们能做的最简单的事情就是让它们随着时间的推移保持生长,看看最终哪些细胞能‘繁荣’生长。如果某个基因被沉默后,细胞无法存活了,这意味着,该基因对癌细胞的增殖非常关键。”

值得一提的是,为了消除由“Seed Effects”(siRNAs无意沉默了不相关的基因的现象)造成的假阳性的结果,该研究的共同第一作者Aviad Tsherniak领导开发了一个新型的计算工具——DEMETER。Tsherniak说:“人们有时对RNAi有一种怀疑的态度,因为‘Seed Effects’会使数据很杂。DEMETER能够扣除‘Seed Effects’,帮助我们找到真正的癌症依赖性。”

2别再只关心“突变”了

该研究结果显示,一方面,许多依赖性是癌症特异性的,沉默这些基因只影响一个子集的细胞系。另一方面,超过90%的细胞系对一组76个基因中的至少一个(at least one of a set of 76 genes)具有很强的依赖性。这表明,许多癌症依赖着相对较少的基因和通路。

利用每一种细胞系的分子特征(如突变、基因拷贝数、表达模式),研究小组还建立了基于生物标志物的模型(biomarker-based model),用来帮助解释研究鉴定出的769种依赖性中其中426种背后的生物学(the biology behind 426 of the 769 dependencies)。这些生物标志物被分为基因突变、基因拷贝数减少或基因表达降低、基因表达增加等。

令人惊讶的是,具有生物标志物的80%以上的依赖性与基因表达的变化有关(上调或下调)。突变(通常是支持一个基因作为药物靶点的理由)仅占生物标志物相关依赖性(biomarker-associated dependencies)的16%。

根据该研究通讯作者William C. Hahn的观点,这一成果显示的数据表明,除了关注蛋白质编码基因的突变和变异外,现在是时候更多的关注癌症相关的其它方面了。
此外,研究结果中令人鼓舞的是,科学家们发现的20%的依赖性与先前已经被作为潜在药物靶点的基因有关。

3结语

该研究的共同第一作者Francisca Vazquez说:“我们的结果为一些治疗项目提供了起点,帮助他们决定他们的努力方向。随着越来越多基因组规模的系统数据集变得可用,将所有的数据结合在一起,将帮助我们建立一个真正全面的癌症依赖图谱。”

原始出处
Tsherniak A, Vazquez F, Montgomery PG, et al.Defining a Cancer Dependency Map.Cell. 2017 Jul 27;170(3):564-576.e16. doi: 10.1016/j.cell.2017.06.010.

作者:佚名



版权声明:
本网站所有注明“来源:梅斯医学”或“来源:MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:梅斯医学”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (12)
#插入话题
  1. 2017-10-31 jyzxjiangqin

    癌症关徤基因.

    0

  2. 2017-10-23 jyzxjiangqin

    关键基因图谱.

    0

  3. 2018-06-18 维他命
  4. 2017-09-06 jyzxjiangqin

    769个癌症关键基因.

    0

相关资讯

医生必看!全身各区域淋巴结 CT 图谱

这篇发表在 Radiology 杂志上的经典文章系统归纳了在常规 CT 情况下如何确定全身各区域淋巴结,并且给出了非常清晰的图谱。一起来回顾下吧。基本定位(点击图片可查看大图)注:左、左下、右、右中、右下依次是:头颈部、胸部、腹部、男性盆腔、女性盆腔的定位像。头颈部定位像 hn01-hn09 层面的 CT 影像 (上中颈)注:PSL 副鼻窦淋巴,PAuN 耳前淋巴结,MN 乳突淋巴结,NL 鼻咽

eLife:绘制出有史以来最为详细的人类抗体产生图谱

当病毒和细菌侵入人体时,免疫系统发起反击。B细胞涌入受影响的区域,释放寻求摧毁这些入侵者的抗体分子。这种抗体库的特色是存在许多种特定类型的抗体:一些抗体包裹入侵的病原体,或者阻断它们侵入健康的细胞,而其他的抗体产生能够加快愈合过程的炎症。 如今,在一项新的研究中,来自美国斯坦福大学的研究人员首先绘制出人体如何产生每种抗体类型的图谱,从中揭示出多种多样的产生抗体的B细胞起源自相同的祖先。相关研究

科学家如何深度破解癌症基因组的奥秘?

此前,国际癌症基因组联盟(International Cancer Genome Consortium)向科学界公布了超过1万个癌症基因组的数据,利用这些数据科学家们就能够更好地从基因方面入手来了解癌症的发生及进展机制,这就为后期研究人员开发治疗多种癌症的新型靶向疗法提供了新的思路。 近年来,科学家们一直在深入进行癌症基因组学等相关研究,他们希望通过深入剖析能够鉴别出引发癌症的根本原

Nat&#160Med:单细胞技术能够捕获隐藏的“顽固”癌细胞

2017年5月17日 讯 /生物谷BIOON/ ---研究者们最近开发出了一种新的技术,能够帮助他们发现接受治疗之后体内残留的癌细胞的方法。癌症的个体化化学疗法是最近的革命性癌症治疗进展。然而,尽管这些疗法效果显著,但还是会出现残留癌细胞的复发的情况。由来自牛津大学的Adam Mead教授以及来自瑞典Karolinska研究所的Sten Eirik Jacobsen合作的研究中,作者们发现

Nat Genet:为对抗这一凶险白血病,科学家构建了超级基因图谱

7月3日,Nature子刊《Nature Genetics》在线发表了一篇针对一种恶性儿童血液肿瘤——T型急性淋巴细胞白血病(T-ALL)进行的首个最大规模的基因组测序成果。来自于美国圣犹大儿童医院和儿童肿瘤研究组等研究机构的科学家们对数百名T-ALL患者进行基因组测序,对结果进行一系列复杂分析后构建了前所未有的基因图谱。

NAT GENET:超级基因图谱对抗凶险的T型急性淋巴细胞白血病

7月3日,Nature子刊《Nature Genetics》在线发表了一篇针对一种恶性儿童血液肿瘤——T型急性淋巴细胞白血病(T-ALL)进行的首个最大规模的基因组测序成果。来自于美国圣犹大儿童医院和儿童肿瘤研究组等研究机构的科学家们对数百名T-ALL患者进行基因组测序,对结果进行一系列复杂分析后构建了前所未有的基因图谱。这一图谱为T型急性淋巴细胞白血病提供更多的治疗信息,挖掘了很多之前从未被发现