Nat Biotechn:CRISPR筛选发现非编码DNA的调控功能

2017-04-07 张迪 生物通

近期来自杜克大学的一组研究人员研发出了一种新工具,通过CRISPR-Cas9表观基因组编辑方法提出了一种高通量筛选技术,识别出了人类细胞基因组中的调控元件。大多数DNA并不编码蛋白质,要确定这个基因组“暗物质”在基因调控过程中如何,何时以及何处发挥作用是一个巨大的挑战。近期来自杜克大学的一组研究人员研发出了一种新工具,通过CRISPR-Cas9表观基因组编辑方法提出了一种高通量筛选技术,识别出了人

近期来自杜克大学的一组研究人员研发出了一种新工具,通过CRISPR-Cas9表观基因组编辑方法提出了一种高通量筛选技术,识别出了人类细胞基因组中的调控元件。

大多数DNA并不编码蛋白质,要确定这个基因组“暗物质”在基因调控过程中如何,何时以及何处发挥作用是一个巨大的挑战。近期来自杜克大学的一组研究人员研发出了一种新工具,通过CRISPR-Cas9表观基因组编辑方法提出了一种高通量筛选技术,识别出了人类细胞基因组中的调控元件。

这一研究成果公布在4月3日的Nature Biotechnology杂志上,文章作者,杜克大学的Charles Gersbach表示:“事实证明,大多数常见的复杂疾病,如血管疾病,糖尿病和神经系统疾病中出现的遗传变异实际上发生在基因之间的这一区域中。现在找到了可以注释这些非编码基因组功能的方法,令人激动。”

来自纽约大学的Neville Sanjana(未参与该项研究)认为,“非编码基因组数量巨大,要识别出哪些区域具有关键的蛋白编码调控作用十分有挑战性,这项研究利用CRISPR池筛选技术(CRISPR pooled screening technology)能帮助我们找出非编码基因组功能区域的位置。”

在这篇文章中,Gersbach等人构建了导向RNA的慢病毒文库,靶向围绕两个兴趣位点:β-珠蛋白和HER2的周围DNA数百兆碱基中的可能调控元件,然后通过整合一个荧光蛋白,构建了报告靶标基因激活的细胞系。

研究人员将两种形式的Cas9蛋白(dCas9)引入到这一细胞系中(dCas9具有失活的核酸酶活性):dCas9抑制形式能召集蛋白,令组蛋白H3中赖氨酸9位置甲基化,从而导致靶序列中的异染色质形成和基因抑制;dCas9激活剂形式能结合到靶向DNA增强子或启动子上,促进组蛋白H3上赖氨酸27的乙酰化,导致基因激活。

接下来,研究人员将低水平导向RNA文库转入细胞系中,确保每个细胞中都有一个导向RNA,之后通过荧光对细胞进行分选,并对细胞中的导向RNA进行测序,尤其是哪些具有特别高或者特别低靶基因表达水平的细胞。

序列检测证实了之前已知的调节元件,也揭示了其它DNA序列的新作用。尽管不是全部序列,但大多数序列都出现在了激活和抑制物筛选中了。研究人员发现一些序列似乎在一种细胞类型的基因调控中扮演了重要的角色,但对其它细胞类型的同样基因没有影响。虽然目前观察到的基因表达变化很微妙,但研究人员证实了个体DNA序列的调控作用。

“我们知道一些表观基因组与基因调控的变化存在非常重要的关系,但要将这些观察转变成对基因如何被调控的实际理解总是很困难的,”文章的另外一位作者Tim Reddy说,“我们并不清楚我们观察到的特定表观遗传修饰是否存在是因果关系,但现在从我们实验室和其他人的其他工作来看,表观基因修饰确实参与了这些靶基因的调控。”

布莱根妇女医院的Richard Sherwood(未参与该项研究)则认为这种筛选技术可以帮助研究人员解释大量的基因组数据,譬如ENCODE之类的项目。Sherwood说:“工具箱中的工具越多,我们就能分析更多不同的问题,这令人感到兴奋。”

目前Reddy,Gersbach及其同事正在努力扩展筛选技术,希望能分析不同的细胞和组织类型中整个基因组中的候选调控元件,他们也计划利用这一技术来更好地了解一些疾病。

Reddy说:“我们知道很多区域的基因调控与疾病有关。现在我们可以深入探讨这些引发疾病的分子机制,这些机制本身可能也是治疗的途径,未来也有可能有助于更好的指导临床诊断,并且区分对治疗产生不同应答的患者,以便更好的进行临床治疗。”

原始出处:

Tyler S Klann, Joshua B Black, Malathi Chellappan,et al. CRISPR–Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. nature biotechnology. 2017 Apr.

作者:张迪



版权声明:
本网站所有注明“来源:梅斯医学”或“来源:MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:梅斯医学”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (8)
#插入话题

相关资讯

CRISPR专利故事跌宕起伏,这一次张锋输了……

欧洲专利局EPO 3月23日宣布他们将会把CRISPR基因编辑技术的广义专利(专利号为EP13793997B1)授予加州大学伯克利分校、奥地利维也纳大学和德国亥姆霍兹传染病研究中心。这一专利内容包括原核细胞,真核细胞和生物机体中使用CRISPR技术。基因组编辑工具CRISPR因其巨大的商业价值而引发了专利大战。今年2月15日,美国专利商标局专利审判和上诉委员会(PTAB)就CRISPR基因编辑的专

利用Perturb-Seq和CRISP-Seq大规模平行分析数以万计基因扰动

单细胞筛选:一种向导RNA(gRNA)文库---每个gRNA靶向一个独特的基因用于CRISPR干扰,并且携带一种独特的条形码序列---被导入一个细胞群体中,这个细胞群体的密度确保一个gRNA平均进入一个细胞中。单个细胞随后被分选到携带添加着独特条形码的polyT引物的液滴中,这些引物被用来提取细胞的mRNA。随后,对这些mRNA进行测序揭示出引入的基因突变(所引入的突变是由gRNA决

一波新的CRISPR工具浮出水面

2017年3月28日/生物谷BIOON/---当你读到这篇文章时,又一波CRISPR工具将会浮出水面。它们将需要接受测试和优化。不过,如果你询问开发者你在开展概念验证研究时是否应当试用它们时,你将仅获得鼓励。毕竟,迄今为止它们还不能从Addgene公司获得,但是将会很快上市了。 最新发布的一系列CRISPR工具包括新的谱系追踪方法,该方法能够提供一种窗口来研究发育的最早阶段。如

eLife:挑战常规!利用CRISPR-Cas9突变证实癌基因MELK其实并不致癌

MELK抑制剂正在接受测试的多种癌症之一是急性淋巴细胞白血病(ALL)。图片来自James Grellier/Wikimedia。 2017年3月29日/生物谷BIOON/---根据一项新的研究,一种被认为是癌细胞必需的蛋白,即母系胚胎亮氨酸拉链蛋白激酶(maternal embryonic leucine zipper kinase, MELK),可能实际上并不是如此必需的。来自

Cell:揭示抗CRISPR蛋白阻断CRISPR系统机制

想象一下细菌和病毒一直处于军备竞赛之中。对很多细菌而言,一种抵抗病毒感染的防御线是一种复杂的RNA引导的“免疫系统”,即CRISPR-Cas。这个免疫系统的核心是一种识别病毒DNA和触发它破坏的监视复合物。然而,病毒能够反击,利用抗CRISPR蛋白让这种监视复合物不能够发挥功能。但是,在此之前,没有人准确地知道这些抗CRISPR蛋白如何发挥作用。

一篇文章让他从神坛跌为众矢之的,《CRISPR的英雄们》背后的始末

看到这里,大家应该也完全能理解我们为何把Lander称为神坛上的人物了。那么,Lander到底为何走下了神坛成了众科学家言语攻击的对象呢?难道是因为学术剽窃造假?挪用公款?私生活混乱?