Cell光遗传学重要成果:三年颠覆一个旧理论

2016-07-26 叶予 生物通

手机收到新消息你是不是一定要马上打开?看书学习的时候你有没有总在走神?这些在生活中很常见的行为,常常令人联想到强迫症和多动症。实际上,真正的疾病有着非常严重的表现。强迫症OCD患者无法控制自己停止特定的行为,比如他们老是觉得自己手脏,总是反复洗手甚至能在水池边呆好几个小时。多动症(也称为注意缺陷多动障碍)ADHD则是另一个极端,患者无法持续做同一件事,往往坐立不安,做出毫无缘由的行为。那么,这些患


手机收到新消息你是不是一定要马上打开?看书学习的时候你有没有总在走神?这些在生活中很常见的行为,常常令人联想到强迫症和多动症。实际上,真正的疾病有着非常严重的表现。

强迫症OCD患者无法控制自己停止特定的行为,比如他们老是觉得自己手脏,总是反复洗手甚至能在水池边呆好几个小时。多动症(也称为注意缺陷多动障碍)ADHD则是另一个极端,患者无法持续做同一件事,往往坐立不安,做出毫无缘由的行为。

那么,这些患者为何无法控制自己的自主行为呢?七月二十一日,神经学家Rui Costa领导团队在Cell杂志上发表文章揭示了其中的关键机制。这项研究增进了我们对大脑疾病的理解,有助于找到更有效的治疗方式。

科学家们普遍认为,人类采取特定行动的过程取决于大脑中的两个神经回路:位于大脑基底神经节(basal ganglia)的直接通路和间接通路。“所有影响基底神经节的疾病(比如帕金森症、亨廷顿舞蹈病、Tourette's综合征)都有一些共同点,”Costa说。“这些患者都不能控制自己的行动。”因此他认为,强迫症和多动症也和这些回路有关。

抛弃过时的理论

过去的理论模型是这样描述这两个通路的:激活第一个通路触发行动,激活第二个通路抑制行动。2013年Costa在Nature杂志上首次发文对这个观点提出了挑战。自那以后,这个理论也受到了其他国家一些研究团队的质疑。今年四月,Costa团队还在Current Biology杂志上发表文章展示,这些通路并不总是相互竞争的,它们有时一同起作用促成不同的结果。

“这不是一个非黑即白的问题,”Costa表示。“现实从来都不会这么简单。”现在,他和同事提出了两个通路联合起作用的新模型,这个模型能够很好的解释实验数据。

六年来,研究人员一直在用光遗传学技术进行实验。这种技术可以在小鼠大脑中选择性激活不同的神经通路。研究人员训练小鼠通过按压杠杆八次来获得食物。随后,他们在小鼠执行任务的过程中激活直接或间接通路。

一票否决权

研究显示,干扰小鼠的直接通路会使其停止按压杠杆,“冻结”在原地。当间接通路激活的时候,小鼠会离开杠杆跑到其他地方去玩。似乎它们突然决定去干点别的,比如散个步什么的。

Costa指出,这些结果说明直接通路的作用是维持行动,而间接通路的作用是允许或防止行动转变。“我们看到的是,直接通路告诉动物行动应当继续执行,而间接通路负责批准或否决这一行动。”这些发现符合人们目前对基底神经节相关疾病的理解。“我们认为,在强迫症中直接通路过于活跃,促使行为不断重复。而多动症ADHD与间接通路的功能障碍有关。”

研究人员提出的新模型有重要的医学意义。举例来说,人们正在用L-Dopa治疗帕金森症。这种药物激活直接通路并且抑制间接通路,会使患者出现无法控制的重复行动作。而著名抗精神病药物氟哌啶醇(haloperidol)通过刺激间接通路起作用,会引起影响运动和认知能力的副作用。

“与其强力激活其中一个通路,还不如轻轻调节两个通路来治疗基底神经节疾病,”Costa说。“恢复两个通路之间的平衡可能是更有效的选择。”

原始出处

Fatuel Tecuapetla4,correspondenceemail, Xin Jin, Susana Q. Lima, Rui M. Costa4,correspondenceemail.Complementary Contributions of Striatal Projection Pathways to Action Initiation and Execution.Cell.2016

作者:叶予



版权声明:
本网站所有注明“来源:梅斯医学”或“来源:MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:梅斯医学”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (5)
#插入话题

相关资讯

The Scientist:神经科学2015年度四大技术突破(成像、光遗传学、单细胞分析、CRISIPR)

12月24日,The Scientist评选出了“Top Technical Advances 2015”,成像、光遗传学、单细胞分析以及基因编辑技术CRISIPR入选。那么,我们就一起看看这四大技术在过去的一年中都取得了哪些进展吧。 成像 今年,生命科学的成像领域打破了过去的壁垒,科学家们通过显微镜学方法越来越深入的观察到了生命组织。 Spectrometer-free vib

光遗传学——照进细胞的一束光

图片来源:Anna Reade 转基因斑马鱼胚胎上的闪亮蓝光让科学家选择性地激活光敏感转录因子。 从现在开始10年后,这种技术将会成为发育生物学和细胞生物学界人人使用的工具。 Kevin Gardner打开一个小冰箱模样的培养器,看着里面闪烁的蓝光,这种场景经常让他想起上世纪70年代的美国纽约迪斯科舞厅。“一些有趣的事情正在这里发生。”他提示说。不过,他说的不是迪斯科闪光灯,而是微观

Elife:光遗传学与免疫工具结合,有望成为癌症治疗强大工具

免疫疗法是癌症研究的一个热门领域。毕竟,利用人体自身的细胞来对抗癌症,比起对整个系统产生损害的有毒化学物质,更为有效和更加低创。 美国德克萨斯A&M大学(Texas A&M University)健康科学中心生物科学与技术学院助理教授Yubin Zhou博士,致力于研究如何用光来控制免疫系统,并诱导其对抗癌症。Zhou博士2003年6月毕业于浙江大学医学院,2007年在美国乔

光遗传学——给大脑装光控开关,有望成为解开大脑秘密的钥匙

大家好!我是大脑的主人神经元君,今天我要给大家介绍下如何控制大脑。 大脑作为人体的司令部,控制着我们的一言一行。如果我们能够控制人的大脑,我们就可以改变人的思维,控制人的行为了。看似不可实现的想法,科学家们早已经迈出了第一步。他们不需要咒语,不需要魔杖,只需要通过一束光,就可以让你的思维发生变化。这可不是什么天方夜谭的魔术哦,这项高大上的新兴技术叫做光遗传学(Optogenetics)!

临床治疗新技术:光遗传学不断制造惊喜

光遗传学(Optogenetics)从基础研究到临床应用的飞速发展打破了人们对技术发展曲线的常规观念。从基础到临床,光遗传学都显示出了无穷的活力和潜力,众多新技术、新设备和新想法不断涌现。1、光遗传学的诞生用光来控制神经细胞并不是本世纪全新的想法。早在1979年,DNA双螺旋的发现者之一、诺贝尔奖获得者弗朗西斯·克里克(Francis Crick)在《科学美国人》的一篇文章里就曾畅想,神经科学