实拍超级细菌入侵全过程,攻克1000倍浓度抗生素只需十天

2016-09-18 DeepTech深科技-杨立中 DeepTech深科技-杨立中

抗生素是人类的大救星。人类历史上,细菌感染曾经酿出过无数惨剧,但最近70多年来,人类开发出几千种抗生素,让细菌感染似乎不足挂齿。21世纪的今天,癌症才是健康的最大威胁。 然而,人类抗生素对细菌的优势却正在逐步丧失。随着抗生素的广泛使用、甚至是滥用,细菌的抗药性正在逐步增强。近年来,令人闻之色变的“超级细菌”(对多种抗生素具抗药性(multidrug resistant,MDR)的病原

抗生素是人类的大救星。人类历史上,细菌感染曾经酿出过无数惨剧,但最近70多年来,人类开发出几千种抗生素,让细菌感染似乎不足挂齿。21世纪的今天,癌症才是健康的最大威胁。

然而,人类抗生素对细菌的优势却正在逐步丧失。随着抗生素的广泛使用、甚至是滥用,细菌的抗药性正在逐步增强。近年来,令人闻之色变的“超级细菌”(对多种抗生素具抗药性(multidrug resistant,MDR)的病原体)更是大量出现。而人类新开发抗生素的脚步却已停滞多年:

各时期新发现的抗生素类型数量

你没有看错,人类已经25年没有发现新的抗生素种类了。在与超级细菌变异的时间赛跑里,我们已经落后。

那么,细菌抗药性的产生速度可以有多快?

近日,《科学》杂志上刊登了一篇论文。来自哈佛大学和以色列理工学院Roy Kishony实验室的科学家们设计了一种全新的装置,模拟细菌在较大空间尺度、不同抗生素浓度环境下的生存、迁移、变异情况。与浓度均一的培养皿相比,这种环境更加接近实际情况。而他们用缩时拍摄(Time-lapse photography)拍下的结果,触目惊心。

实验装置

实验装置是一个60cm×120cm(约2英尺×4英尺)的矩形盘,内装有含有不同抗生素浓度的琼脂。在最外层,抗生素浓度为0,次外层为细菌不能生长的最低浓度(1x最小抑菌浓度),由外向内依次指数递增,直到中心为1000倍最小抑菌浓度。

抗生素浓度分布

在黑色琼脂的背景下,大肠杆菌呈现出白色。没有抗药性的大肠杆菌将从最外层开始生长,通过不断地变异逐渐向中心迁移。

起初,次外层就已经是细菌的地狱,一旦接触就会立即死亡,而中心的1000倍浓度简直就是超级无敌变态炼狱。

科学家们想要观察的,正是在实验环境下,细菌需要多久可以进化出超级无敌变态的耐药性。

毕竟,人类新抗生素药物研发周期需要至少10年之久。

而细菌给出的答案是:不到两周。

实验全过程如下:

实验开始时,大肠杆菌从不含抗生素的最外层开始生长,生长到与次外层的边界便会停止。

细菌开始生长

然而,约两天时间后,处于边界的一小部分大肠杆菌开始变异(注意箭头),产生了最初的抗药性。之后,变异在多处出现,1x最小抑菌浓度区域沦陷,抗药性get。

最早的变异出现

此时,具有初步抗药性的大肠杆菌依然被阻挡在10x浓度抗生素区域内。然而,在之前变异基础上,很快就有新的变异攻克了这一区域。与此同时,一些其它的变异看似已经落后了。

更多变异出现,细菌攻克10倍浓度区域

细菌们通过逐层迁移,逐渐进入了除1000倍最小抑菌浓度区域以外的所有区域。在实验开始约11天后,第一种可以抵抗1000x抗生素的变异产生。很快,全部区域均告攻克:细菌,胜!

攻克1000x抗生素浓度区域

在这个细菌进化的模拟实验里,通过不停的变异,大肠杆菌抗药性也逐渐累积,并越来越强悍。研究人员将实验中大肠杆菌获得1000倍抗药性的过程中总共182个变异点进行了分析,找出了变异细菌的图谱,并用不同颜色标记了变异时的抗生素浓度。

变异图谱。变异时抗生素浓度由蓝到红指数递增。

研究人员发现,在变异发生、细菌试图适应新环境时,生长速度会变慢。但是一旦拥有了对该浓度的完全抗药性,就又会恢复最快生长速度,迅速在该浓度环境下扩散。

有意思的是,他们还发现,细菌非常“聪明”:“笑到最后”的强变异并不是一开始进展最快的。它们悄悄躲在迁移迅速却较弱的变异身后,待“先驱”英勇地变成“先烈”,再脱颖而出。“我们的发现说明,进化并不总是由最强的变异引领的,”该论文第一作者Michael Baym说。

这并不是对细菌在真实环境下产生抗药性的全真模拟,但极好地展示了这一过程究竟能有多快:10天左右的时间里,大肠杆菌便产生了对抗1000倍于原始致死量的抗药性。更换了另一种抗生素后,这个数字更是变成了惊人的10万倍。

那么问题又来了。这是实验室里的结果,好吓人。真实的细菌抗药性情况有这么恐怖吗?

答案是:非常不乐观。也许用不了很久,我们将永远失去抗生素这一对抗细菌感染最重要的武器。而在最坏的情形下,只需20年,细菌变异将使得伤口感染重新变得致命。

有人预计,到2050年,每年死于细菌感染的人数(紫色)将达到一千万,超过癌症重新成为最重要的致死原因。

而这绝不是危言耸听。世界卫生组织2014年的一份报告指出,全球范围内,抗药性已经开始蔓延。

以肺结核为例。2013年,全球约有48万例新发耐多药结核病,占新发结核病例的3.5%。而曾接受治疗的病例为耐多药结核病的比例更是高达20.5%。广泛耐药结核病已在100个国家发现。耐多药结核病需要更长的疗程,而且治疗效果也不如非耐药结核病好。

新发结核病例中耐多药结核病占比

曾接受治疗的结核病例中耐多药结核病占比

此外,

在大湄公河次区域的部分地区,已经发现对恶性疟疾的最佳可用治疗(以青蒿素为基础的联合疗法)出现耐药性。

在世界上所有区域,引起普通感染(如尿道感染、肺炎、血流感染)的细菌对抗生素耐药的比例高。很高比例的医院获得性感染是由高度耐药的细菌引起的。

已有十个国家报告了由对治疗淋病的最后手段(三代头孢菌素)耐药引起的治疗失败。鉴于目前没有正在开发的疫苗或新药,淋病可能很快成为无法治疗的疾病。

……

事态如此严峻,我们又能做什么?

世界卫生组织认为,每一个人、医疗工作者、药剂师、政策制定者、科学家和企业界应共同努力,协调行动,以减少抗药性的出现和蔓延。

各国政府已经开始行动,主要从了解抗药性机理、维持现有药物有效性、开展新治疗方案的研究(比如调动人的免疫力、使用病毒对付细菌)等三个方面进行努力。

而对于每一个普通人,我们又能做什么来保护自己的健康?世卫组织提出的建议如下:

洗手,避免与病人发生密切接触以防止流感或轮状病毒等细菌感染和病毒感染,使用避孕套防止性传播感染的发生;

接种疫苗,保持疫苗接种的及时状态;

仅在有资质的卫生专业人员开具处方的情况下使用抗微生物药物;

用药过程中即使感觉好转,也要完成整个疗程;

不与他人共用抗微生物药物,不使用剩余的处方药。

可以看出,要做到这些并没有很难。

对抗细菌耐药性首先要从改善个人卫生习惯开始,而个人卫生习惯首先就是勤洗手。而其中的倒数第二条:“即使感觉好转,也要完成整个疗程”也非常重要。在上面的大肠杆菌实验中,即便在最小抑菌浓度下,几乎所有细菌都没法活着等到变异出现的第三天。感觉已经病好,是抗生素已经摧毁了大多数的细菌。但继续维持体内足够浓度的抗生素,将最大限度减少变异的出现和传播的可能。

细菌的抗药性并不是被人类逼出来的,而是细菌与生俱来的生存本领。抗生素也不是人类发明的,而是在其它微生物中“发现”的。进化史上,不同微生物之间抗生素和耐药性的进化仿佛魔与道的斗法,又好比矛与盾的较量,是一种已经持续了几十亿年的自然现象。而人类参与这一进程,不过区区几十年而已。

1928年,亚历山大·弗莱明发现了青霉素,开启了抗生素拯救人类的历史。短短几十年后,人类就再一次面临了来自细菌的挑战。

让我们向伟大的科学先驱致敬,并祈祷人类的自律和科学的光芒可以照亮世界。

亚历山大·弗莱明和他发现的青霉素

参考:

Scientists film bacteria's maneuversas they become impervious to drugs,http://phys.org/news/2016-09-scientists-bacteria-maneuvers-impervious-drugs.html

Spatiotemporal microbial evolution onantibiotic landscapes, Science, science.sciencemag.org/cgi/doi/10.1126/science.aag0822

Smith A. Bacterial resistance toantibiotics[J]. Hugo and Russell’s Pharmaceutical Microbiology, 2007: 220-232.

抗微生物药物耐药性,http://www.who.int/mediacentre/factsheets/fs194/zh/

The FDA’s Antibacterial Soap Ban IsBad News for Superbugs,Megan Molteni, https://www.wired.com/2016/09/FDAs-ban-antibacterial-soaps-bad-news-superbugs/

Human vs superbug: Too late to turnthe tide?,Liz Bonnin, http://www.bbc.co.uk/guides/z8kccdm

The Evolution of Bacteria on a“Mega-Plate” Petri Dish, Harvard Medical School, https://www.youtube.com/watch?v=plVk4NVIUh8

作者:DeepTech深科技-杨立中



版权声明:
本网站所有注明“来源:梅斯医学”或“来源:MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:梅斯医学”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (9)
#插入话题
  1. 2016-09-27 童小孩

    学习了,很受益,谢谢分享,继续关注中!

    0

  2. 2016-09-21 夫夫子

    好可怕的样子!

    0

相关资讯

超级细菌的耐药性怎么解决?

抗生素耐药性正成为世界民众面临的主要问题和严峻挑战。CDC数据显示,美国每年约有200万人出现耐药性感染,超过23000人死于耐药性感染。 抗碳青霉烯类肠杆菌属(CRE)是一些耐药比较严重的细菌,菌种包括大肠杆菌、肺炎克雷伯杆菌等,单从菌种来看(不考虑耐药性的话)它们都是人肠道中的常见细菌。CRE已经成为美国耐药性感染的最大威胁之一,每年约9000人出现CRE耐药性感染,其中600人死亡。CRE几

“超级细菌”的耐药性基因可遗传

6月22日, 德国科学家日前发布的一项研究成果显示,让细菌具有耐药性的基因不仅能够跨越不同物种传播,还能通过接触染色体而遗传。 以某些大肠杆菌为代表的革兰氏阴性菌已对多种抗生素具有耐药性。目前,多粘菌素是对抗耐药性细菌的最后一道防线,但是一个名为MCR-1的基因会让细菌对多粘菌素也产生耐药性,变成“超级细菌”,使相关疾病的治疗更加困难。 2015年11月,中国首次报告在牲畜和人身上

“超级细菌”MRSA的克星来了 存在南极海绵中

近日,研究者在一种南极海绵动物中发现了一种物质,该物质可以有效杀灭98%的耐药超级菌——耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus,MRSA),目前该菌在美国快速传播。随着越来越多的细菌对目前使用的抗生素产生耐药性,科学家正在极力地寻找可以抵御这些病菌的物质,这 项研究发现的存在于南极海绵中的一种物质可能是其中的一个选择。

可耐强抗生素的“超级细菌”,在美国再次现身!

美国研究人员11日说,美国发现第二例携带含基因MCR-1的“超级细菌”病例(首例是5月份报道:美国发现首例mcr-1多粘菌素耐药感染)(“超级细菌”现身美国,去年在中国首先发现! 可抵抗已知所有抗生素)。这个基因会使细菌对被称为抗生素中“最后一道防线”的多粘菌素产生耐药性。美国JMI实验室的研究人员在新一期美国《抗微生物制剂与化学疗法》期刊上报告说,在源于纽约一名患者的大肠杆菌中发现了MCR-1基

Nature:晕,超级细菌克星!就藏在我们的鼻腔

“住”在我们鼻腔中的一种细菌可生产出能杀死超级细菌的新药。德国图宾根大学的一个研究小组称,他们在人类鼻腔内发现的一种名为“路邓葡萄球菌”的细菌,具有独特功效,在被制成抗生素后不但能杀灭超级细菌,还不易产生耐药性。该发现有助研发出新型疗法,让此前“刀枪不入”的超级细菌闻风丧胆。 抗生素曾被称为抗菌素,在大量使用多年后,也让细菌产生了极强的抗药性。以耐甲氧西林金黄色葡萄球菌(MRSA)、抗万古霉

Nat Microbiol:科学家开发出可高效杀灭超级细菌的星状多聚体分子

图片来源:www.phys.org 近日,来自墨尔本大学的研究人员通过研究开发了一种小型的星状分子,相比细菌已经产生耐药性的抗生素而言,这种分子能够有效杀灭多种细菌,相关研究刊登于国际杂志Nature Microbiology上,该研究或为后期科学家们开发抵御对多种抗生素耐药的细菌提供新的希望和思路。 随着时间过去,细菌会慢慢开始产生突变来保护自身免于抗生素杀灭,从而就会使得很多抗生素疗法